
EE 435

Lecture 19

• Determination of Loop Gain

• Other methods of gain enhancement

• Linearity of Transfer Characteristics



Basic Two-Stage Op Amp

Right Half-Plane Zero Limits Performance
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• Why does the RHP zero limit performance ?

• Can anything be done about this problem ?

• Why is this not 3rd order since there are 3 caps ?
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Why does the RHP zero limit performance ?

• accumulate phase shift and slow gain drop with RHP zeros 

• loose phase shift and slow gain drop with LHP zeros

• effects are dramatic
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In this example:
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Two-stage amplifier with LHP Zero 

Compensation
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z1 location can be programmed by RC

If gc>gm5, z1 in RHP and if gc<gm5, z1 in LHP

RC has almost no effect on p1 and p2

Review from last lecture



Two-stage amplifier with LHP Zero 

Compensation
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where should z1 be placed?
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Two-stage amplifier with LHP Zero 

Compensation
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Analytical formulation for compensation requirements not easy to obtain

   (must consider at least 3rd –order poles and both T(s) and poles not 

     mathematically tractable)

CC often chosen to meet phase margin (or settling/overshoot) requirements

after all other degrees of freedom used with computer simulation from magnitude 

and phase plots

p3

X

Review from last lecture



Basic Two-Stage Op Amp with LHP zero
VDD

CC

CLM1 M2

M3 M4 M5

M6M7

VINVIN

VOUT
VA VB

VB1 VB2

RC

Realization of RC

VXX

VYY

OR
RC

Transistors in triode region

Very little current will flow through transistors (and no dc current)

VDD or GND often used for VXX or VYY

VBQ well-established since it determines IQ5 

Using an actual resistor not a good idea (will not track gm5 over process and temp)

C
OX EB

L
R =

μC WV

Review from last lecture



Basic Two-Stage Op Amp with LHP zero
VDD
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with zero cancellation of p2

{P, θ, VEB1, VEB3, VEB5,VEB6,VEB7 ,RC,CC}

7 Degrees of Freedom

2 constraints (phase margin), m5
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Design Flow:
1. Ignore RC and design as if RHP zero is present

2. Pick RC to cancel p2

3. Adjust p1 (i.e. change/reduce CC) to achieve desired phase margin

(or preferably desired closed-loop performance for desired β)
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Two-Stage Amplifiers

 Classical Loop Gain Analysis

• Loop Gain

– Loading of A and β networks

– Breaking the Loop (with appropriate terminations)

– Biasing of Loop

– Simulation of Loop Gain 

• Open-loop gain simulations

– Systematic Offset

– Embedding in closed loop
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Loop Gain -  Aβ

• Sometimes it is not obvious where the actual loop gain is at in a 

feedback circuit

• The A amplifier often causes some loading of the β amplifier and the β 

amplifier often causes some loading of the A amplifier

• Often try to “break the loop” to simulate or even calculate the loop 

gain or the gains A and β

• If the loop is not broken correctly or the correct loading effects on both 

the A amplifier and β amplifier are not included, errors in calculating 

loop gain can be substantial and conclusions about compensation 

can be with significant error

Loop Gain is a Critical Concept for Compensation of  Feedback 

Amplifiers when Using Phase Margin Criteria (If you must!)

Review from last lecture



Loop Gain -  Aβ
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Breaking the loop to obtain the loop gain (Ideal A amplifier)
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Note terminations where the loop is broken – open and short
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Block diagram represents small-signal feedback model
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Loop Gain -  Aβ
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But what if the amplifier is not ideal?

The Loop Gain is
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Note that AVL is affected by both its own input and output impedance and 

that of the β network 

This is a really “messy” expression 

Any “breaking” of the loop that does not result in this expression for AVL will 

result in some errors though they may be small

The Forward Amplifier  Gain is

Review from last lecture



Loop Gain -  Aβ
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the Loop

But what if the amplifier is not ideal?

• Most authors talk about breaking the loop to determine the loop gain Aβ

• In many if not most applications, breaking the loop will alter the loading of 

either the A amplifier or the β amplifier or both

• Should break the loop in such a way that the loading effects of A and β are 

 approximately included

•  Consequently, breaking the loop will often alter the actual loop gain a little

• Q-point must not be altered when breaking the loop (for analysis with simulator)

• In most structures, broken loop only gives an approximation to actual loop gain

• Sometimes challenging to break loop in appropriate way

(for voltage-series feedback configuration)



Loop Gain -  Aβ
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But what if the amplifier is not ideal?
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(for voltage-series feedback configuration)

Standard Small-Signal Loop Gain Circuit

Standard Loop Gain Circuit including Biasing

(terminations shown in ss circuit are what is needed in the actual amplifier)



Loop Gain -  Aβ

But what if the amplifier is not ideal?
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(for voltage-series feedback configuration)

Loop Gain from Terminated Loop

Real Loop Gain 
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Breaking loop even with this termination will result in some error in ALOOP



Loop Gain -  Aβ
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But what if the amplifier is not ideal?

(for voltage-series feedback configuration)

Better Standard Small-Signal Loop Gain Circuit Better Loop Gain Circuit including Biasing
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(terminations shown in ss circuit are what is needed in the actual amplifier)



Loop Gain -  Aβ
for four basic amplifier types

voltage-series feedback

VIN AVV1V1

VOUT

RL

β

VIN AVV1V1
RL

β βVOUT

VIN GMV1V1

RL

β

iOUT

VIN
GMV1

V1

RL

β βVOUT

current-series feedback

Feedback Amplifier Loop Gain Amplifier



Loop Gain -  Aβ
for four basic amplifier types
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voltage-shunt feedback

Feedback Amplifier Loop Gain Amplifier

current-shunt feedback



Open-loop gain simulations

• Must first adjust VXX to trim out any systematic offset

• Always verify all devices are operating in the desired region of operation

• If an ac input is applied to VIN, no information about linearity or signal swing will

be obtained

• If any changes in amplifier circuit are made, VXX must be trimmed again

• Include any loading including loading of beta network (with proper termination)

VXX

Vic

VIN

VOUT

Load 

with 

TerminationTermination

Bias



Open-loop gain simulations
(with a closed-loop test bench)

• Stabilizes the effect of the systematic offset voltage

• Test β network may not be related to actual β at all

• Loading of actual β network included in “Load with Termination”

• Input and output buffers eliminate any loading effects of the test β network

• AV must be calculated from measurements (simulations) of VOUT and VA

• Test β network must be chosen so overall network is stable
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Load 

with 

TerminationTermination

Bias

1 1
Test

Β

Network

VA

VIC

Why not just use actual β network for test β network?

Feedback circuit with actual β network may even be unstable before 

compensation is complete 
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Feedback simulations

Why not just simulate the frequency response of the actual feedback amplifier 

and look at the magnitude of the gain to see if that is what we want ?

Isn’t that what we really want anyway? 

XIN

β

A
XOUT

If the amplifier is overly underdamped or oscillatory, won’t that show up anyway?

Remember, the small-signal analysis will have the same magnitude response 

for minimum-phase and non-minimum phase systems !



https://youtu.be/L8wJhENPZNc

Many sources on line discussing STB analysis.  
(One youtube video is listed below (without assessment of either validity or quality)

Tools for Helping with Amplifier Compensation

Numerous tools but generally 

require analytical models  

Based upon testbenches using 

actual circuit schematics (though 

behavioral descriptions can be included)

(in Spectre)



Other Methods of Gain Enhancement

Increasing the output impedance of the amplifier

     cascode, folded cascode, regulated cascode

Increasing the transconductance

    (current mirror op amp) but it didn’t really help because

     

Cascading gives a multiplicative gain effect 

     (thousands of architectures but compensation is essential)

      practically limited to a two-level cascade because of too much 

      phase accumulation

the output conductance increased proportionally

Methods used so far:
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Other Methods of Gain Enhancement
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Two Strategies:

1. Decrease denominator of AV0

2. Increase numerator of AV0

Previous approaches focused on decreasing denominator or 

increasing numerator with current mirror

Consider now increasing numerator with excitation

Recall:

Recall: 



Other Methods of Gain Enhancement
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by changing the excitation
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gmeq Enhancement with Driven 

Counterpart Circuit
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• In the small-signal parameter domain, both 

gain and GB appear to be enhancement

• Is this real?
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gmeq Enhancement with Driven 

Counterpart Circuit
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gmeq Enhancement with Driven 

Counterpart Circuit
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GB and AV0 improved !

Is this real?



Other Methods of Gain Enhancement

Increasing the output impedance of the amplifier

     cascode, folded cascode, regulated cascode

Increasing the transconductance

    (current mirror op amp) but it didn’t really help because

     

Cascading gives a multiplicative gain effect 

     (thousands of architectures but compensation is essential)

      practically limited to a two-level cascade because of too much 

      phase accumulation

the output conductance increased proportionally

Driving the counterpart circuit does offer some improvements in gain



Other Methods of Gain Enhancement
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Two Strategies:

1. Decrease denominator of AV0

2. Increase numerator of AV0

Consider again decreasing the denominator

Recall: 
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Is it possible to come up with circuits that will provide a 

subtraction of conductance in the denominator ?



Other Methods of Gain Enhancement
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Gain Enhancement with Regenerative Feedback
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The gain can be made arbitrarily large by 

selecting gmP1 appropriately

The GB does not degrade !

But  if not careful, maybe gmP1 will get too large! 



Gain Enhancement with Regenerative Feedback
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The gain can be made arbitrarily large by selecting gmP1 

appropriately

The GB does not degrade !

This circuit has a positive feedback loop (VINP1:VOUT:-VOUT)

But - can we easily build circuits with this property?
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But - can we easily build circuits with this property?
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But – the inverting amplifier may be more difficult to build than the op amp itself!

V
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R

R

V
OUT

Gain Enhancement with Regenerative Feedback

Do we need 2 op amps, one serving as a buffer to drive the R resistors?
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But - can we easily build circuits with this property?

But – the inverting amplifier may be more difficult to build than the op amp itself!

Gain Enhancement with Regenerative Feedback
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YES – simply by cross-coupling the outputs in a fully differential structure



Gain Enhancement with Regenerative Feedback 
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If gmP1 = goF1+goP1, the dc  gain will become infinite  !!
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Term this “gain reversing” when dc gain changes sign with pole



Gain Enhancement with Regenerative Feedback

 L

mP1oP1oF1

C

ggg-
p

+−
=

( )s
mF1

V0
L oF1 oP1 mP1

g
A

sC g g g

−
=

+ + −

F
1

P
1

V
IN

-V
OUT

V
OUT

C
L

If gmP1 > goF1+goP1, the pole will be in the RHP  !!

This will make the op amp unstable

This is the major reason most have avoided using the structure !

Positive Feedback is BAD !!



Gain Enhancement with Regenerative Feedback
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This will make the op amp unstable

This is the major reason most have avoided using the structure !

Positive Feedback is BAD !!

But is Positive Feedback really bad?

Is an unstable operational amplifier 

really bad?  



41

Why is this circuit is seldom discussed?  
 Support your answer with sound analytical principles or concepts.

VOUT

VIN

R2

R1

Is positive feedback bad?

Is an unstable operational amplifier 

really bad?  

From Problem 7  HW 1



Stay Safe and Stay Healthy !



End of Lecture 19
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